

FIG. 3. Diffractometer scans indicating the line-broadening effect discussed in the text. (1) PVF_{2} from DMSO; 95-5 blend of $\mathrm{PVF}_{2}-\mathrm{PVF}$; (3) 93-7 copolymer VF_{2}-TFE. $100 \mathrm{cps} ; 0.4 \% \mathrm{~min}$.
method of calculating amorphous density suggested by Van Krevelen and Hoftyzer [39] gave a value of $1.55 \mathrm{~g} / \mathrm{cm}^{3}$ for PVF_{2}. This value can be compared with an extrapolated value from an earlier paper by Doll and Lando [23] of $1.48 \mathrm{~g} / \mathrm{cm}^{3}$. Generally the crystallinities as determined by density measurements are higher than those determined by X-ray diffractometer scans. However, regardless of
which method is used to determine the crystallinity, the samples will maintain their same position on a scale that rates them from highest to lowest crystallinity.

The effect of pressure on the total entropy of melting for all samples that crystallize in phase I is shown in Fig. 4. Figure 5 indicates the same relationship for all samples which crystallize from the melt in phase II. The total change of entropy upon melting is corrected to 100% crystallinity on the basis of the X-ray diffractometer crystallinity measurements. The volume of melting curves and the total entropy of melting curves will have identical shapes since $\Delta P / \Delta T_{m}$ is a constant for these fluoroolefin samples, and it is assumed that the Clapeyron equation can be applied.

PHASE I

FIG. 4. Effect of pressure on the total entropy of melting for samples that crystallize in phase I. (1) 93-7 Copolymer $\mathrm{VF}_{2}-\mathrm{TFE}$ (LPC); (2) 93-7 copolymer $\mathrm{VF}_{2}-\mathrm{TFE}$ (HPC); (3) $95-5$ copolymer $\mathrm{VF}_{2}-\mathrm{VF}$; (4) $91-9$ copolymer $\mathrm{VF}_{2}-$ VF_{3} (HPC); (5) 95-5 blend $\mathrm{PVF}_{2}-\mathrm{PVF}$; (6) PVF_{2} from DMSO.

